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Abstract
The structure of collapse models is investigated in the framework of quantum
measure theory, a histories-based approach to quantum mechanics. The
underlying structure of coupled classical and quantum systems is elucidated in
this approach which puts both systems on a spacetime footing. The nature of
the coupling is exposed: the classical histories have no dynamics of their own
but are simply tied, more or less closely, to the quantum histories.

PACS number: 03.65.Ta

1. Introduction

Models of ‘spontaneous localization’ or ‘dynamical wavefunction collapse’ are observer-
independent alternatives to standard Copenhagen quantum theory (see [1] for a review). These
models have a generic structure: there is a quantum state � which undergoes a stochastic
evolution in Hilbert space and there is a ‘classical’ (c-number) entity—call it α—with a
stochastic evolution in spacetime. The stochastic dynamics for the two entities—� and α—
are coupled together. The stochastic dynamics in Hilbert space tends to drive � into an
eigenstate of an operator α̂ that corresponds to α. And the probability distribution for the
realized values of α depends on � so that the history of α follows, noisily, the expectation
value of α̂ in �.

That collapse models have both quantum and classical aspects has been pointed out before,
notably by Diósi. The nature of this interaction between the classical and quantum parts of
these models is, however, somewhat obscured by the profound difference in the nature of their
descriptions: the classical variable traces out a history in spacetime and the quantum state
traces out its evolution in Hilbert space.

In order to illuminate the nature of the quantum–classical coupling within collapse models
we will, in the case of a concrete and specific example, recast the formalism into the framework
of generalized measure theory [2] in which both classical and quantum systems are treated
on as equal a footing as possible. The classical variables will continue to have a spacetime
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description, but the quantum system will now also be described in terms of its spacetime
histories and not fundamentally in terms of any state in Hilbert space.

The model we will focus on is a discrete, finite, 1+1 dimensional lattice field theory. This
is a useful model because it is completely finite (so long as we restrict ourselves to questions
involving finite times) and expressions can be written down exactly, and also because there is
a well-defined background with a non-trivial causal structure, so that questions of causality
can be explored.

We will show that the model contains both ‘classical’ and ‘quantum’ histories, and
demonstrate the nature of their interaction. We will show that one choice of ontology for
collapse models, the Bell ontology [3], corresponds to coarse graining over the quantum
histories. We will also show how the well-known relationship between collapse models and
open quantum systems coupled to an environment reveals itself in this histories framework.

2. Quantum measure theory

We start with a brief review of generalized measure theory and quantum measure theory and
refer to [2, 4–7] for more details.

A generalized measure theory consists of a triple, (�,A, µ), of a space of histories, an
event algebra and a measure. The space of histories, �, contains all the ‘fine-grained histories’
or ‘formal trajectories’ for the system e.g. for n-particle mechanics—classical or quantum—a
history would be a set of n trajectories in spacetime, and for a scalar field theory, a history
would be a field configuration on spacetime.

The event algebra, A, contains all the (unasserted) propositions that can be made about
the system. We will call elements of A events, following standard terminology in the theory
of stochastic processes. In cases where � is finite, A can be identified with the power set, 2�.
When � is infinite, A can be identified with an appropriate ring of sets contained in the power
set: A ⊂ 2�.1

Predictions about the system—the dynamical content of the theory—are to be gleaned, in
some way or another, from a generalized measure µ, a non-negative real function on A. µ is
the dynamical law and initial condition rolled into one.

Given the measure, we can construct the following series of symmetric set functions,
which are sometimes referred to as the Sorkin hierarchy2:

I1(X) ≡ µ(X)

I2(X, Y ) ≡ µ(X � Y ) − µ(X) − µ(Y )

I3(X, Y,Z) ≡ µ(X � Y � Z) − µ(X � Y ) − µ(Y � Z) − µ(Z � X) + µ(X) + µ(Y ) + µ(Z)

and so on, where X, Y,Z, etc are disjoint elements of A, as indicated by the symbol ‘�’ for
disjoint union.

A measure theory of level k is defined as one which satisfies the sum rule Ik+1 = 0. It is
known that this condition implies that all higher sum rules are automatically satisfied, namely
Ik+n = 0 for all n � 1 [2].

A level 1 theory is thus one in which the measure satisfies the usual Kolmogorov sum
rules of classical probability theory, the classical Brownian motion being a good example. A
level 2 theory is one in which the Kolmogorov sum rules may be violated but I3 is nevertheless
zero. Any unitary quantum theory can be cast into the form of a generalized measure theory

1 A is a Boolean algebra with addition in the algebra corresponding to symmetric difference and multiplication in
the algebra corresponding to intersection. We will not employ this algebraic notation in this paper.
2 These are the generalized interference terms introduced in [2].
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Figure 1. The light cone lattice. σ0 is the initial surface and σn is a generic spacelike surface.
The surface σn+1 is shown after the vertex vn+1 is evolved over. A vertex vi is shown with its two
outgoing links, l2i−1 to the left and l2i to the right.

and its measure satisfies the condition I3 = 0. We refer to level 2 theories, therefore, as
quantum measure theories.

The existence of a quantum measure, µ, is more or less equivalent [2] to the existence of
a decoherence functional, D(·; ·), a complex function on A × A satisfying [8, 9]

(i) Hermiticity: D(X;Y ) = D(Y ;X)∗ , ∀ X, Y ∈ A;
(ii) additivity: D(X � Y ;Z) = D(X;Z) + D(Y ;Z) , ∀ X, Y,Z ∈ A with X and Y disjoint;

(iii) positivity: D(X;X) � 0 , ∀ X ∈ A;
(iv) normalization: D(�;�) = 1.3

The quantal measure is related to the decoherence functional by

µ(X) = D(X;X) ∀ X ∈ A. (2.1)

The quantity D(X;Y ) is interpretable as the quantum interference between two sets of histories
in the case when X and Y are disjoint.

3. The lattice field model

We review the lattice field model [10, 11] whose structure we will investigate. The model is
based on a unitary QFT on a 1+1 null lattice [12], which becomes a collapse model on the
introduction of local ‘hits’ driving the state into field eigenstates.

The spacetime lattice is a light cone discretization of a cylinder, N vertices wide and
periodic in space. It extends to the infinite future, and the links between the lattice vertices are
left- or right-going null rays. Figure 1 shows a part of such a spacetime lattice; identifying the
leftmost vertices with the rightmost vertices, we see that N = 6. A spacelike surface σ is a
maximal set of mutually spacelike links, and consists of N left-going links and N right-going
links cut by the surface; an example of a spatial surface is shown in figure 1. We assume an
initial spacelike surface σ0.

An assignment of labels, v1, v2, v3, . . . , to the vertices to the future of σ0 is called ‘natural’
if i < j whenever the vertex labelled vi is to the causal past of the vertex labelled vj . A
natural labelling is equivalent to a linear extension of the (partial) causal order of the vertices.
A natural labelling, v1, v2, . . . , is also equivalent to a sequence of spatial surfaces, σ1, σ2, . . . ,

3 The normalization condition may turn out not to be necessary, but we include it because all the quantum measures
we consider in this paper will satisfy it.
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where the surface σn is defined such that between it and σ0, lie exactly the vertices v1, . . . , vn.
One can think of the natural labelling as giving an ‘evolution’ rule for the spacelike surfaces:
at time step n, the surface creeps forward by one ‘elementary motion’ across vertex vn. For
the purpose of this paper, it is convenient to consider a fixed natural labelling. Nothing will
depend on the natural labelling chosen; all mathematical quantities will be independent of the
choice.

The local field variables � live on the links. These field variables take only two values
{0, 1}, so that on each link there is a qubit Hilbert space spanned by the two field eigenstates
{|0〉, |1〉}. As the field variables live on the links, it is convenient to have a labelling of the
links. We choose a labelling la, a = 1, 2, . . . , such that l2i−1 and l2i are the left-going and
right-going outgoing links, respectively, from vertex vi (see figure 1). So, as the vertex label
i increases from 1 to n, the link label a runs from 1 to 2n. We denote the qubit Hilbert space
related to link la by Hla .

The initial state |ψ0〉 on surface σ0 is an element of the 22N dimensional Hilbert space
Hσ0 which is a tensor product of 2N two-dimensional Hilbert spaces on each link cut by
σ0,Hσ0 = ⊗

la∈σ0
Hla . Similarly there is a 22N dimensional Hilbert space for each spacelike

surface σi and they are isomorphic via the isomorphisms, tied to the lattice, which map each
link’s qubit Hilbert space onto the Hilbert spaces for the links vertically above it on the lattice.
In this way, we can identify the Hilbert spaces Hσi

(=⊗
la∈σi

Hla

)
on each surface and describe

the time evolution with a state evolving in a single Hilbert space Hq

(�Hσi

)
of the system.

3.1. The unitary theory

In the standard unitary version of this local field theory, there is a local unitary evolution
operator, Ri , for each vi , which acts unitarily on the four-dimensional factor of the Hilbert
space associated with the two ingoing and two outgoing links for vi , and acts as the identity
operator on all other factors. The state vector is evolved from σi−1 to σi by applying Ri [12].

So in figure 1 we see that the surface σn evolves ‘over’ vertex vn+1 to give us surface
σn+1. Now if lj , lk are the two links going ‘into’ vertex vn+1, and l2(n+1)−1, l2(n+1) are the two
outgoing links, the operator Rn+1 maps Hlj ⊗ Hlk to Hl2(n+1)−1 ⊗ Hl2(n+1)

. Further, for the links
in the intersection of σn and σn+1, Rn+1 acts as the identity. Since the surfaces σn, σn+1 only
differ on the links lj , lk, l2(n+1)−1, l2(n+1), we can put this together to get Rn+1 : Hσn

→ Hσn+1 .
Since we have identified the Hilbert spaces Hσi

, we regard Rn+1 as evolving a state in the
‘system Hilbert space’ Hq , so we write

|ψn+1〉 = Rn+1|ψn〉
= Rn+1Rn · · · R1|ψ0〉. (3.1)

We define the unitary time evolution operator, U(n), by

U(n) ≡ RnRn−1 . . . R1. (3.2)

To cast the theory into a quantum measure theory framework, we need to identify the
space, �q of histories, an event algebra, Aq , of suitable subsets of �q and the decoherence
functional, Dq(·; ·).

In the lattice field theory the set of histories, �q , is the set of all field configurations on
the lattice to the future of σ0. A field configuration, �, is an assignment of 0 or 1 to every
link; in other words � is a function from the infinite set of links, {la : a = 1, 2, . . .}, to Z2.

The events that we want to consider are those which refer to properties of the histories
which are bounded in time. In other words for A ⊂ �q to be an event there must exist an
integer m such that to determine whether or not a field configuration, �, is in A it is only
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necessary to know the values of � between σ0 and σm. For example, the subset

Ek = {� ∈ �q : �(l2k) = 1}
is an event for any fixed k. But the subset

E = {� ∈ �q : ∃k s.t. �(l2k) = 1}
is not an event (at least not for the purposes of the current paper).

We want to consider all events that are bounded in time. To this end, for each positive
integer n we define �n

q to be the set of field configurations, �n, on the first 2n links, l1, . . . , l2n,
outgoing from the first n vertices v1, . . . , vn. (Recall that we have chosen an arbitrary, but
fixed, natural labelling of the vertices which gives unambiguous meaning to ‘the first 2n

links’.) We define the cylinder set Cyl(�n) to be the set of all elements of �q which coincide
with �n on l1, . . . , l2n:

Cyl(�n) ≡ {� ∈ �q |� = �n when restricted to the first 2n links}.
Each cylinder set, Cyl(�n), is an event that is bounded in time: it is the event ‘the first

2n values of the field agree with �n’. The event algebra, Aq , then, is the (unital) ring of sets
generated, under finite union and intersection, by all the cylinder sets, Cyl(�n), for all n and
all �n ∈ �n

q .
Two cylinder sets have nonempty intersection if and only if one contains the other and

the complement of a cylinder set (that for �n, say) is a disjoint union of finitely many cylinder
sets (those for all the configurations on l1, . . . , l2n that are not �n). Thus, all elements of Aq

are finite, disjoint unions of cylinder sets. Given an event, A ∈ Aq , there is indeed an integer,
m, such that to determine whether or not a field configuration, �, is in A, it is only necessary
to know the values of � between σ0 and σm. We will refer to the minimum of such m as the
time extent of A. The time extent of the cylinder set Cyl(�n) is clearly n and the time extent
of an event A is no greater than the maximum of the time extents of the cylinder sets whose
union is A.

Consider the example given previously, Ek . We can see that this is the union of all the
cylinder sets for the �k such that �k(l2k) = 1:

Ek =
⋃

�k s.t.
�k (l2k )=1

Cyl(�k). (3.3)

The time extent of event Ek is k.
A cylinder set is an event which corresponds to the history of the field up to a finite time.

For each cylinder set, Cyl(�n), the class operator, C(�n) [9], for that finite history is given
by

C(�n) ≡ P H
2n

(
�n

2n

)
P H

2n−1

(
�n

2n−1

)
. . . P H

2

(
�n

2

)
P H

1

(
�n

1

)
. (3.4)

P H
a

(
�n

a

)
is the projection operator onto the eigenspace corresponding to the value, �n

a = 0 or
1, of �n at link la in the Heisenberg picture:

P H
a

(
�n

a

) = U([(a + 1)/2])†Pa

(
�n

a

)
U([(a + 1)/2]), (3.5)

where Pa

(
�n

a

)
is the Schrödinger picture projector, U(k) is the unitary time evolution operator

(3.2) and [·] denotes the integer part. The Schrödinger picture projector is

Pa

(
�n

a

) = ∣∣�n
a

〉〈
�n

a

∣∣, (3.6)

acting on the factor of Hq associated with la (tensored with the identity operator on the other
factors).
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Expressed in the Schrödinger picture, the class operator is

C(�n) = U(n)P2n

(
�n

2n

)
P2n−1

(
�n

2n−1

)
Rn · · ·P4

(
�n

4

)
P3

(
�n

3

)
R2P2

(
�n

2

)
P1

(
�n

1

)
R1, (3.7)

which might be summarized by the slogan ‘evolve, project, evolve, project . . . ’.
We define a useful vector-valued amplitude for the finite history �n by applying its class

operator to the initial state,

|�n〉 ≡ C(�n)|ψ0〉. (3.8)

This vector is sometimes referred to in the literature as a ‘branch’ [9].
The decoherence functional, Dq , is defined on cylinder sets by the standard expression

[9]

Dq(Cyl(�n); Cyl(�m)) ≡ 〈�n|�m〉. (3.9)

The decoherence functional is defined on the whole event algebra, Aq , by additivity since all
events are finite disjoint unions of cylinder sets. Although we have used the natural labelling
that we chose for the vertices at the beginning, the decoherence functional thus constructed is
independent of the chosen order and depends only on the vertices’ causal order because the
projectors and unitary evolution operators for spacelike separated vertices and links commute
[10].

Note that the properties of the projectors ensure that formula (3.9) for the decoherence
functional is consistent with the condition of additivity when one cylinder set is a disjoint
union of other cylinder sets. For example, Cyl(�n) is a disjoint union of all events Cyl(�n+1)

such that �n+1 agrees with �n on the first 2n links and the decoherence functional of Cyl(�n)

(with any other event B) is indeed given as a sum:

Dq(Cyl(�n);B) =
∑

�n+1 s.t.
�n+1|n=�n

Dq(Cyl(�n+1);B), (3.10)

where the sum is over all four field configurations on the first 2(n + 1) links which agree with
�n on the first 2n links.

If the initial state is a mixed state, then the decoherence functional is a convex combination
of pure state decoherence functionals.

This decoherence functional gives a level 2 measure, µq , on Aq (see section 2).

3.2. The collapse model with the Bell ontology

The above unitary quantum field theory inspired a collapse model field theory [10] which,
with the Bell ontology, can be understood as a level 1 (classical) measure theory in the Sorkin
hierarchy (see section 2) as follows.

The space, �c, of all possible histories/formal trajectories is an identical copy of that for
the quantum field theory, namely the set of all field configurations on the semi-infinite lattice
to the future of σ0. We will refer to field configurations in �c as α in order to distinguish them
from the elements of �q which we refer to (as above) as �. The event algebra Ac consists of
finite unions of cylinder sets of elements of �c and so is isomorphic to Aq .

The dynamics of the collapse model is given by a classical (level 1) measure. Since a
level 1 measure is also level 2—each level of the hierarchy includes the levels below it—a
classical measure can also be given in terms of a decoherence functional and in this case the
decoherence functional, Dc, is given as follows.

Let αn be a field configuration on the first 2n links. Define a vector-valued amplitude
|αn〉 ∈ Hq for each cylinder set Cyl(αn):

|αn〉 ≡ J2n

(
αn

2n

)
J2n−1

(
αn

2n−1

)
Rn · · · R2J2

(
αn

2

)
J1

(
αn

1

)
R1|ψ0〉, (3.11)
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where |ψ0〉 is the initial state on σ0 and Ja

(
αn

a

)
is the Kraus operator implementing a ‘partial

collapse’ onto the eigenspace corresponding to the value of αn at link la . More precisely,

Ja(0) = 1√
1 + X2

(|0〉〈0| + X|1〉〈1|) (3.12)

Ja(1) = 1√
1 + X2

(X|0〉〈0| + |1〉〈1|) (3.13)

(where 0 � X � 1) acting on the factor of Hq associated with the link la (tensored with the
identity operator for the other factors).

Then the decoherence functional, Dc is defined on cylinder sets by

Dc(Cyl(αn); Cyl(αn)) ≡ 〈αn|αn〉δαnαn , (3.14)

where δαnαn is a Kronecker delta which is one if the two field configurations are identical on
all 2n links and zero otherwise.

The decoherence functional is then extended to the whole event algebra, Aq by additivity
since all events are finite disjoint unions of cylinder sets. In particular, if m > n, the
cylinder set Cyl(�n) with the time extent n is a disjoint union of cylinder sets with the time
extent m, and so it suffices to define Dq as above for cylinder sets of the same time extent:
Dc(Cyl(αn); Cyl(αm)) is given by additivity.

Again, the decoherence functional thus constructed is independent of the chosen natural
labelling and depends only on the vertices’ causal order because of spacelike commutativity
of the evolution operators and Kraus operators.

Dc is well defined, in particular, the additivity condition is consistent with definition
(3.14). For example, consider

Dc(Cyl(αn); Cyl(αn)).

The event Cyl(αn) is a disjoint union of all events Cyl(αn+1) for which αn+1 agrees with αn on
the first 2n links, and indeed we have

Dc(Cyl(αn); Cyl(αn)) =
∑

αn+1 s.t.
αn+1|n=αn

∑
αn+1 s.t.

αn+1|n=αn

Dc(Cyl(αn+1); Cyl(αn+1)). (3.15)

In verifying this, the crucial property is that of the Kraus operators: J 2
0 + J 2

1 = 1 and the
fact that distinct histories have no interference, as expressed by the Kronecker delta. Note
that without the Kronecker delta, equation (3.14) would not be a consistent definition of a
decoherence functional satisfying additivity.

This decoherence functional is level 1 (classical): it satisfies

Dc(Y ;Z) = Dc(Y ∩ Z;Y ∩ Z), (3.16)

and this implies that the Kolmogorov sum rule is satisfied by the measure µc defined by
µc(Y ) ≡ Dc(Y ;Y ). Being a level 1 measure, µc has a familiar interpretation as a probability
measure. Indeed the measure µc defined on the cylinder sets is enough, via the standard
methods of measure theory, to define a unique probability measure on the whole sigma
algebra generated by the cylinder sets. There is, as yet, no analogous result for a quantal
measure such as µq . Moreover, there is, as yet, no consensus on how to interpret a quantum
measure theory. We will not address this important question here, but refer to [6, 7, 13] for
a new proposal for an interpretation of quantum mechanics within the framework of quantum
measure theory.

7
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3.3. Quantum and classical

In every collapse model, there is a coupling between classical stochastic variables and a
quantum state. How is this classical–quantum coupling manifested in the generalized measure
theory form of the lattice collapse model just given? We now show that there is indeed
a quantum measure lurking within and we will expose the nature of the interaction of the
quantal variables with the classical variables.

Consider a space of histories �qc which is a direct product of the two spaces introduced
above, �qc = �q × �c, so that elements of �qc are pairs of lattice field configurations,
(�, α). We will refer to the elements of �q as quantum histories/fields and those of �c as
classical histories/fields. The event algebra Aqc is the ring of sets generated by the cylinder
sets, Cyl(�n, αn), where the cylinder set contains all pairs (�, α) such that � coincides with
�n and α coincides with αn on the first 2n links.

We now construct a decoherence functional on Aqc by taking the unitary decoherence
functional, Dq on Aq , defined above and ‘tying’ the classical histories to the quantum histories
by suppressing the decoherence functional by an amount that depends on how much the
classical and quantum field configurations differ. The more they differ, the greater the
suppression. In detail, define Dqc on Aqc by first defining it on the cylinder sets:

Dqc(Cyl(�n, αn); Cyl(�n, αn)) ≡ Dq(Cyl(�n); Cyl(�n))
Xd(�n,αn)+d(�n,αn)

(1 + X2)2n
δαnαn , (3.17)

where 0 � X � 1 and d(�n, αn) is equal to the number of links on which �n and αn differ.
As usual it suffices to define Dqc for arguments which have the same time extent, n, because a
cylinder set with the time extent m < n is a finite disjoint union of cylinder sets with the time
extent n. Dqc is extended to the full event algebra by additivity.

Checking that the definition (3.17) of Dqc on the cylinder sets is consistent with the
property of additivity follows the same steps as for Dc and Dq . Dqc is level 2 in the Sorkin
hierarchy, although it is clearly classical on �c.

We now prove some lemmas regarding Dqc which lay bare the structure of our collapse
model of a lattice field in a histories form.

Lemma 1. Let (�q,Aq,Dq), (�c,Ac,Dc) and (�qc,Aqc,Dqc) be defined as above for the
lattice field theory. Then the decoherence functional for the collapse model, Dc is equal to
Dqc coarse grained over �q:

Dc(A;A) = Dqc(�q × A;�q × A) ∀ A,A ∈ Ac. (3.18)

Proof. It suffices to prove that

Dc(Cyl(αn); Cyl(αn)) =
∑

�n,�n

Dqc(Cyl(�n, αn); Cyl(�n, αn)), (3.19)

where the double sum is over all field configurations, �n and �n, on the first 2n links. The
result follows by additivity because⋃

�n

Cyl(�n, αn) = �q × Cyl(αn). (3.20)

Recall the definition of Dc,

Dc(Cyl(αn); Cyl(αn)) = 〈αn|αn〉δαnαn ,

where

|αn〉 = J2n

(
αn

2n

)
J2n−1

(
αn

2n−1

)
Rn · · · R2J2

(
αn

2

)
J1

(
αn

1

)
R1|ψ0〉.
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Each jump operator Ja

(
αn

a

)
is a linear combination of the two projection operators Pa(1) =

|1〉〈1| and Pa(0) = |0〉〈0| on link la (see equations (3.12) and (3.13)). Substituting in this linear
combination of projectors for each Ja

(
αn

a

)
and expanding out, we see that the ket becomes a

sum of 22n terms, one for each possible field configuration—call it �n—on the 2n links. Each
such term is precisely the vector-valued amplitude |�n〉 (3.8) and each term is weighted by a
factor

Xd(αn,�n)

(1 + X2)n
,

from which the result follows. �

The next lemma shows that if we coarse grain Dqc over the classical histories instead, we
find a quantum theory exhibiting the symptoms of environmental decoherence.

Lemma 2. Define a decoherence functional D̃q on �q by

D̃q(F ;F) ≡ Dqc(F × �c;F × �c) ∀ F,F ∈ Aq . (3.21)

Then

D̃q(Cyl(�n); Cyl(�n)) =
(

2X

1 + X2

)d(�n,�n)

Dq(Cyl(�n); Cyl(�n)). (3.22)

We leave the proof to the appendix. Note that the factor suppresses off-diagonal terms in
the decoherence functional and so looks as if it is the result of environmental decoherence.

3.4. Equivalence to a model with environment

The system described by a decoherence functional Dqc on the joint space �qc was not derived
from any physical consideration but simply invented as a way to unravel the decoherence
functional of the collapse model. However, once obtained, the urge to coarse grain Dqc over
the classical histories is irresistible and the ‘approximately diagonal’ form of the resulting
decoherence functional, D̃q on �q suggests that it can be interpreted as having arisen from
coupling to an environment.

Indeed, the mathematics of collapse models and of open quantum systems that result from
coarse graining over an ignored environment are known to be closely related and so it is of no
surprise to discover that our current model can be understood in this way. Indeed, the classical
histories in the collapse model can simply be reinterpreted as histories of an environment
consisting of variables, one per link, that interact impulsively with the field there, and then
have no further dynamics.

Let the quantum lattice field, �, interact with a collection of environment variables,
one for each link, taking values 0 or 1. The space of histories for the whole system is
�qe ≡ �q ×�e, where the space of environment histories, �e, is yet another copy of the same
space of {0, 1}-field configurations on the semi-infinite lattice. We denote an element of �e

by E, an environment configuration on the first 2n links by En, the corresponding cylinder set
by Cyl(En) and the value of the environment variable on link a by En

a .
In the standard state vector language, the Hilbert space of the whole system of field, �,

and the environment is Hqe ≡ Hq ⊗He, where the environment Hilbert space, He, is an infinite
tensor product of qubit Hilbert spaces, Hea

, a = 1, 2, . . . , one for each link la on the lattice to
the future of σ0.

9
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Lemma 3. There is a unitary dynamics of this system such that the unitary decoherence
functional which encodes it, Dqe, is equal to Dqc if the environment histories are identified
with the classical histories.

Proof. The proof is by construction of such a dynamics. We add, to the unitary dynamics
of the field �, a one-time interaction between � and the environment variable on each link
which establishes a partial correlation between them. Since each environment state lives on
exactly one link, it interacts only once and is then fixed, which means that the decoherence
functional is diagonal on the environment histories.

We begin with the space of histories �qe = �q ×�e and the Hilbert space Hqe = Hq ⊗He,
where He = ⊗∞

a=1Hea
and each Hea

is a qubit space.
The initial state is a tensor product

|�0〉 = |ψ0〉q ⊗∞
a=1 |0〉ea

, (3.23)

where |ψ0〉q ∈ Hq is the same initial state for the field � as we had before.
After each elementary unitary evolution Ri is applied over vertex i, two unitary ‘partial

measurement’ operators U2i−1 and U2i—to be defined—are applied to the Hilbert spaces
associated with the outgoing links l2i−1 and l2i , respectively.

Consider a single link, la . The factor of the total Hilbert space associated with la
is the four-dimensional tensor product of the qubit space, Hqa

, of the � states on la and
the qubit space Hea

. In the field representation, the basis of this link Hilbert space is{|0〉qa
|0〉ea

, |1〉qa
|0〉ea

, |0〉qa
|1〉ea

, |1〉qa
|1〉ea

}
.

The unitary partial measurement operator Ua is defined by its action on this basis:

Ua|0〉q |0〉e = 1√
1 + X2

|0〉q(|0〉e + X|1〉e)

Ua|1〉q |0〉e = 1√
1 + X2

|1〉q(X|0〉e + |1〉e)

Ua|0〉q |1〉e = 1√
1 + X2

|0〉q(X|0〉e − |1〉e)

Ua|1〉q |1〉e = 1√
1 + X2

|1〉q(|0〉e − X|1〉e),

(3.24)

where 0 � X � 1 and we have suppressed the a label on all the kets. Ua acts as the identity
on all other factors in the tensor product Hilbert space for the system.

The action of Ua is to leave � eigenstates alone and put the initial |0〉e environment state
into a superposition of |0〉e and |1〉e, so that the environment eigenstate that is correlated with
the � eigenstate is relatively enhanced by a factor X−1.

For each cylinder set Cyl(�n,En) we define a vector-valued amplitude, |�n,En〉qe ∈ Hqe,
by evolving the state over each vertex, applying the unitary partial measurements on the
outgoing links and projecting onto the values of �N and EN on the links:

|�n,En〉qe ≡ Q2n

(
En

2n

)
P2n

(
�n

2n

)
Q2n−1

(
En

2n−1

)
P2n−1

(
�n

2n−1

)
×U2nU2n−1Rn · · · Q2

(
En

2

)
P2

(
�n

2

)
Q1

(
En

1

)
P1

(
�n

1

)
U2U1R1|�0〉,

(3.25)

where |�0〉 is defined in (3.23), Pa

(
�n

a

)
is the projection operator onto the eigenspace

corresponding to the value of �n at link la and Qa

(
En

a

)
is the projection operator onto

the eigenspace corresponding to the value of En at link la . Pa

(
�n

a

)
is only non-trivial on

the factor in Hq associated with link la and Qa

(
En

a

)
is only non-trivial on the factor in He

associated with link la . As a consequence, the P projectors and Q projectors commute.

10
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The initial state is a product; each Ua leaves � eigenstates alone and the Q projectors act
only on the environment states. We claim therefore that |�n,En〉qe is a product,

|�n,En〉qe = |�n〉q |En〉e, (3.26)

where |�n〉q ∈ Hq is the vector-valued amplitude (3.8) for the plain vanilla unitary field theory
and

|En〉e = Xd(�n,En)

(1 + X2)n

∣∣En
1

〉
e1

∣∣En
2

〉
e2

· · · ∣∣En
2n

〉
e2n

, (3.27)

where we have left off the factors of |0〉 for all the infinitely many links to the future of σn,
which play no role.

The proof of this claim is given in the appendix.
The decoherence functional, Dqe, for the total system is given by

Dqe(Cyl(�n,En); Cyl(�n,En)) ≡ 〈�n,En|�n,En〉 (3.28)

= 〈�n|�n〉q〈En|En〉e. (3.29)

Using (3.27), we see that the decoherence functional is zero unless En = En and we have

Dqe(Cyl(�n,En); Cyl(�n,En)) = Dq(Cyl(�n); Cyl(�n))
Xd(�n,En)+d(�n,En)

(1 + X2)2n
δEnEn . (3.30)

As usual, we only need to define the decoherence functional for cylinder sets of equal
time extent. We see that this is equal to Dqc, the decoherence functional of the collapse model
(3.17). �

The model is technically unitary and so falls into the category of ordinary quantum theory,
but the classicality of the environment variables is achieved by the device of postulating an
infinite environment and one-time interactions.

4. Discussion

None of the physics we have presented is new. We have merely provided a novel perspective
on a known model that arises when spacetime and histories are given a central role. Diósi
stressed that both classical variables and quantum state are present in a collapse model and
advocates ascribing reality to both of them [14]. We have replaced the formalism of quantum
state with quantum histories and by placing quantum and classical variables on the same
footing in spacetime, we can see more clearly the character of the interaction between them.

We claim that the structure outlined above for the collapse model for a lattice field theory
is generic to collapse models. There is always, more or less hidden in the model, a space
of histories which is a product of a space of quantum histories and a space of classical
histories, with a decoherence functional on it. For example, in the case of the GRW model
[15] the classical histories are countable subsets of Galilean spacetime to the future of some
initial surface, t = 0. The elements of such a countable subset are the ‘collapse centres’
(xi, ti), i = 1, 2, . . . . The probability distribution on these classical histories is given by a
classical decoherence functional, Dc, which is, essentially, set out in [16]. In order to follow
the steps taken in this paper of unravelling Dc into Dqc, the positive operators, Gaussians, that
correspond to the classical events are expressed as integrals of projection operators and the
evolution between collapses expressed using the Dirac–Feynman propagator as a sum over
the histories. The quantum histories, then, are precisely the histories summed over in the
Dirac–Feynman path integral: all continuous real functions γ : [0,∞] → R.

11
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The continuum limit of the GRW model is the continuous spontaneous localization
model for a single particle [17, 18] and this too can be cast into the generic form as can
be seen from the formulation of the model in terms of a ‘restricted propagator’ as described in
[19–21]. Although the analysis in these references uses phase space path integrals, if it is the
position operator whose eigenstates are collapsed onto, as is for the continuum limit of QRW,
the path integrals can be transformed into configuration space path integrals. In this case,
the quantum histories are again the continuous paths that contribute to the Dirac–Feynman
sum-over histories, but the classical histories are very noisy, and not continuous paths at all.

Note that in the lattice field theory the spaces of classical and quantum histories in this
case are isomorphic, whereas in the GRW model and its continuum limit the quantum and
classical histories are very different. In all cases, however, it is the quantum histories that bear
all the consequences of the dynamical law encoded in a local spacetime action, whereas the
classical histories are simply dragged along by being tied to the quantum histories.

This state of affairs is illuminated further by considering coupling together two separate
collapse models X and Y. Each model will contain both quantum and classical histories and
the coupling between X and Y will be achieved by an appropriate term in the action involving
the quantum histories alone. It is the quantum histories of X which directly touch the quantum
histories of Y. The classical variables of X only react to the classical variables of Y because they
are restricted to be close to the quantum variables which interact with the quantum variables
of Y to which the classical variables of Y must, in their turn, be close.

The present authors believe, with Hartle, Sorkin and others, that a spacetime approach to
quantum mechanics will be essential to progress in quantum gravity and for this reason
spacetime approaches should be carefully studied. Two important reasons for pursuing
collapse models with the Bell ontology are that the models are already in a spacetime
form and the stochasticity involved is completely classical so all the familiar machinery
of stochastic processes can be brought to bear: the stochasticity of collapse models causes no
more interpretational difficulty than does the randomness of Brownian motion. The theory
concerns the classical variables only and the quantum histories are relegated to some sort
of auxiliary, hidden status, despite the fact that the dynamics of the model is most easily
described in terms of these quantum histories. In order to pursue this direction, therefore, one
must pay the price of ignoring the quantum histories as far as the ontology is concerned: ‘Pay
no attention to that man behind the curtain’ [22].

On the other hand, if the quantum histories are kept in the theory to be treated on the
same footing, a priori, as the classical histories, then the question of the physical meaning
of the quantum measure on them has to be wrestled with: what is the ontology in a quantum
measure theory? But if this thorny problem is to be tackled, then one might start by trying
to address it in the case of unitary quantum mechanics in the first instance. It may be that an
interpretation of the quantum measure can be discovered that, by itself, provides a solution to
the interpretational problems of quantum mechanics, while yet maintaining unitary dynamics
and without the need of new quantum–classical couplings.
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Appendix

Proof of lemma 2. Recall the definition of Dqc:

Dqc(Cyl(�n, αn); Cyl(�n, αn)) = Dq(Cyl(�n); Cyl(�n))
Xd(�n,αn)+d(�n,αn)

(1 + X2)2n
δ(αn, αn).

When the sum is taken over all αn and αn, field configurations on the first 2n vertices, it results
in

Dqc(Cyl(�n) × �c; Cyl(�n) × �c)

= 1

(1 + X2)2n
Dq(Cyl(�n); Cyl(�n))

∑
αn

Xd(�n,αn)+d(�n,αn). (A.1)

Let d(�n,�n) = m, which is the number of links on which the values of the two fields
differ. For the duration of this proof only, we relabel the links on which the two fields differ
l1, l2, . . . , lm and the rest, on which the fields agree, are labelled lm+1, . . . , l2n. Consider the
exponent d(�n, αn) + d(�n, αn). The first m links contribute m to the exponent whatever αn

is, because for each link, αn will agree with exactly one of �n and �n. Therefore,

d(�n, αn) + d(�n, αn) = m + 2d̃(αn,�n), (A.2)

where d̃ is the number of the last 2n–m links on which αn and �n differ.
The sum over αn can be expressed as a multiple sum over the values of the α variable on

each link in turn. We first do the sum over the values on the m links on which �n and �n

differ. The summand does not depend on the values on those links and so this gives a factor
of 2m: ∑

αn

Xd(�n,αn)+d(�n,αn) = 2mXm
∑
αn

m+1

. . .
∑
αn

2n

X2d̃(αn,�n). (A.3)

The remaining sum is over all α configurations on the last 2n–m links. There is one such
configuration that agrees with �n on all 2n–m links,

( 2n−m

1

)
configurations that differ from

�n on one link,
( 2n−m

2

)
that differ from �n on two links, etc. The remaining sum therefore

gives (1 + X2)2n−m, and we have∑
αn

Xd(�n,αn)+d(�n,αn) = 2mXm(1 + X2)2n−m, (A.4)

and hence the result. �

Claim 1.

|�n,En〉qe = Xd(�n,En)

(1 + X2)n
|�n〉q

∣∣En
1

〉
e1

∣∣En
2

〉
e2

. . .
∣∣En

2n

〉
e2n

⊗∞
a=2n+1 |0〉ea

, (A.5)

where |�n〉q is given by (3.1).
This is the claim in lemma 3.

Proof. We use induction. It is trivially true for n = 0.
We assume it is true for n. Let �n+1|n = �n and En+1|n = En. Then

|�n+1, En+1〉qe = Q2n+2
(
En+1

2n+2

)
P2n+2

(
�n+1

2n+2

)
Q2n+1

(
En+1

2n+1

)
P2n+1

(
�n+1

2n+1

)
× U2n+2U2n+1Rn+1|�n,En〉qe. (A.6)
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The P projectors commute with the Q projectors. The Pa projectors also commute with
the partial measurement operators Ua as can be seen from the definition of U (3.24). So we
have

|�n+1, En+1〉qe = Xd(�n,En)

(1 + X2)n
Q2n+2

(
En+1

2n+2

)
Q2n+1

(
En+1

2n+1

)
U2n+2U2n+1

× [
P2n+2

(
�n+1

2n+2

)
P2n+1

(
�n+1

2n+1

)
Rn+1|�n〉q

]
× ∣∣En

1

〉
e1

· · · ∣∣En
2n

〉
e2n

|0〉e2n+1 |0〉e2n+2 ⊗∞
a=2n+3 |0〉ea

. (A.7)

The factor in square brackets is |�n+1〉q ∈ Hq and is unchanged by the U’s because it is
an eigenstate of the field � on the links l2n+1 and l2n+1. The same factor is also unchanged by
the Q’s which only act on the environment states. U2n+1 turns |0〉e2n+1 into a linear combination
of |0〉e2n+1 and |1〉e2n+1 , enhancing the term which is correlated to the value �n+1

2n+1. Similarly for
U2n+2. Finally, Q2n+1

(
En+1

2n+1

)
projects onto the state

∣∣En+1
2n+1

〉
e2n+1

and similarly for Q2n+2
(
En+1

2n+2

)
with the result

|�n+1, En+1〉qe = Xd(�n,En)

(1 + X2)n

X2−δ(�n+1
2n+2,E

n+1
2n+2)−δ(�n+1

2n+1,E
n+1
2n+1)

(1 + X2)
|�n+1〉q |En+1〉e. (A.8)

The δ’s in the exponent of X are Kronecker deltas and combining the factors of X gives the
result. �
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[14] Diósi L 2004 Talk at ‘quantum theory without observers: II (Bielefeld, 2–6 Feb. 2004)
[15] Ghirardi G C, Rimini A and Weber T 1986 A unified dynamics for micro and macro systems Phys. Rev.

D 34 470
[16] Kent A 1998 Quantum histories Phys. Scr. T 76 78–84 (Preprint gr-qc/9809026)

14

http://dx.doi.org/10.1016/S0370-1573(03)00103-0
http://www.arxiv.org/abs/quant-ph/0302164
http://dx.doi.org/10.1142/S021773239400294X
http://www.arxiv.org/abs/gr-qc/9401003
http://www.arxiv.org/abs/gr-qc/9507057
http://dx.doi.org/10.1142/S0217732302007041
http://www.arxiv.org/abs/gr-qc/9903015
http://dx.doi.org/10.1088/1751-8113/40/12/S20
http://www.arxiv.org/abs/quant-ph/0610204
http://www.arxiv.org/abs/quant-ph/0703276
http://www.arxiv.org/abs/gr-qc/9304006
http://dx.doi.org/10.1023/B:JOSS.0000028061.97843.84
http://www.arxiv.org/abs/quant-ph/0209051
http://dx.doi.org/10.1088/0264-9381/21/1/001
http://www.arxiv.org/abs/quant-ph/0401075
http://dx.doi.org/10.1016/0550-3213(87)90193-3
http://www.arxiv.org/abs/arXiv:0711.0894
http://dx.doi.org/10.1103/PhysRevD.34.470
http://dx.doi.org/10.1238/Physica.Topical.076a00078
http://www.arxiv.org/abs/gr-qc/9809026


J. Phys. A: Math. Theor. 41 (2008) 205306 F Dowker and Y Ghazi-Tabatabai
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[21] Diósi L 1995 Selective continuous quantum measurements: restricted path integrals and wave equations Preprint

quant-ph/9501009
[22] Baum L F, Langley N and Fleming V 1939 The Wizard of Oz (Los Angeles, CA: Metro-Goldwyn-Mayer)

15

http://dx.doi.org/10.1016/0375-9601(88)90309-X
http://dx.doi.org/10.1016/0375-9601(88)90555-5
http://dx.doi.org/10.1103/PhysRevD.20.384
http://www.arxiv.org/abs/quant-ph/9501009

	1. Introduction
	2. Quantum measure theory
	3. The lattice field model
	3.1. The unitary theory
	3.2. The collapse model with the Bell ontology
	3.3. Quantum and classical
	3.4. Equivalence to a model with environment

	4. Discussion
	Acknowledgments
	Appendix
	References

